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Abstract—Risk is integrated into all business processes, and
leaders work to limit risk to as low as reasonable within their
systems. Within Industrial Control System networks, risk is
especially challenging due to the second- and third-order effects
that an attack can incur. We present a new equation for risk
and analyze its appropriateness in determining risk through
Monte Carlo methods. We believe that this new equation has
merit in allowing leadership to more quickly access and mitigate
risk based off factors within the decision maker’s control,
understanding how capable an attacker may be, how much
impact an attack would have on the system, and how intensely
an attacker may want to cause damage to the system. These
variables will allow a leader to provide strategic vision to the
business that he/she leads.

Keywords- industrial control system, risk, network security,
monte carlo, impact, opportunity, capability, intent, cyber phys-
ical systems.

I. INTRODUCTION

Reducing risk is a major decision point for leaders in all
sectors. Risk represents a challenge to ensuring that a busi-
ness or operation can occur with minimal hazards impeding
success. The way that risk is viewed and discussed is driven
by leaders who set the tone and agenda for those under their
authority [1]. Leaders are best able to assess risk when they
are able to use objective assessments, but they must operate
their business in a manner that provides them a risk profile
that is most comfortable for their operations [2]. Cybersecurity
challenges risk decision-making because the domain in which
it operates changes at an incredibly high pace. The cyber-
security challenge is amplified when dealing with Industrial
Control Systems (ICS). ICS is defined as “supervisory control
and data acquisition (SCADA) systems, distributed control
systems (DCS), and other control system configurations such
as Programmable Logic Controllers (PLC)” [3]. These devices
have long service lives and do not have the same upgrade
cycle as a normal business information techonology. When
determining risk to an ICS, second- and third-order effects
must be reviewed in order to maintain the ability of the
identified critical infrastructure to survive and recover from
cybersecurity hazards [4].

Our research focuses on presenting risk to ICS in such a way
as to best help leaders determine their risk profile and make
decisions to assist managers and analysts to best defend the
ICS network. We further the research in risk determination
by presenting an equation for risk in the context of ICS,
analyze the presented equation for appropriateness, and present

a method for predicting an attacker’s capability to damage an
ICS.

Organization: In Sec. II, we discuss risk and present our
equation and in Sec. III our methodology for determining at-
tacker capability. In Sec. IV, we analyze the appropriateness of
our presented equation, and we conclude in Sec. V presenting
future work.

II. BACKGROUND

There are many different methods to determine risk within
ICS [5]–[8]. No matter the methodology, risk is well estab-
lished as [9]:

R = (si, pi, xi), i = 1, 2, ..., N (1)

where si is the scenario identifier, pi is the probability of a
identified scenario, xi is the consequence or impact of the
identified scenarios, and N is the number of scenarios. More
simply stated, risk is the likelihood that an unwanted event
might occur [10].

This generic equation is sufficient for many applications,
but National Institute of Standards and Technology (NIST)
and the International Organization for Standardization (ISO)
define risk within the cybersecurity environment as [3], [11]:

Ri = Ti ∗ Vi ∗ Ii (2)

where T is threat, V is vulnerability, and I is impact, and i
is the device being assessed.

Idaho National Laboratory (INL) and others define threat as
a function of opportunity, capability and intent [3], [12]–[14],
which for the purpose of this study we modify to be:

Threat = Capability ∗ Intent ∗Opportunity (3)

From the above equations, we set our risk equation as:

Rs =

∑n
i=1 oi ∗ ci ∗ impi ∗ inti

n
(4)

where Rs is the risk to the entire system of systems, oi is
opportunity for an attacker on an individual system, ci is ca-
pability of the attacker on an individual system, impi is impact
to the an individual system, inti is the intent of the attacker on
an individual system, and n is the number of systems in the
entire system of systems. We do not include vulnerabilities
as a part of the risk equation because while vulnerabilities
management is an important part of cybersecurity, it does not
completely prevent a determined attacker from gaining access



Fig. 1. System of Systems Risk

TABLE I
RISK LEVELS

Risk Level Risk Scale
Low 0 ≤ Rs < 0.25

Medium Low 0.25 ≤ Rs < 0.5
Medium High 0.5 ≤ Rs < 0.75

High 0.75 ≤ Rs ≤ 1.0

to a system. Therefore, we include vulnerability management
as part of our opportunity variable. All values of each variable
are normalized between 0 and 1 to allow risk calculations to
be expressed as a percentage, and divide by the number of
systems to average the risk for the system of systems.

Depending on leader priorities, it may be deemed necessary
to weight the importance of each variable. One way the
weightings can be garnered is through pair-wise comparison
and eigenvector normalization. With weighting, our updated
equation becomes:

Rs =

∑n
i=1(wo ∗ oi) ∗ (wc ∗ ci) ∗ (wimp ∗ impi) ∗ (wint ∗ inti)

n
(5)

We further discuss each variable in Subsections II-A – II-D.
As shown in Figure 1, the risk of the system of systems

is made up of the sub-components of each the subsystems.
It is important to set levels to assist in providing context to
the numbers gained from Equations 4 or 5. We define four
different risk levels; however, we do not set if each of these
levels are better or worse for an ICS. We leave the acceptance
of that risk to the leader of the ICS to set the organization’s
appropriate risk profile. Risk levels are set in Table I.

A. Intent

We define intent as the level of resources and focus an
attacker will use to gain access to a system. Given the
complexities of the psychology behind determining intent, we
leave that to future research and set intent as 1.0.

B. Opportunity

Opportunity, as adapted from [15], [16], is the ability for
a defender to make changes to their network to prevent an
attack. One method for determining opportunity would be to
use Markov Models to predict the change in the security state
[17]. Markov models, as presented by [17], are heavily time-
dependent and focus on types of attacks tied to vulnerabilities
which limits the scope of an attackers available means to attack
a system. Common Vulnerability Scoring System (CVSS)
scores of vulnerabilities are a main factor in how many track
risk to a system [18], [19], including modifying scores to
better fit ICS [20], [21]. As mentioned previously, patching
vulnerabilities do not stop a determined attacker, and within
ICS built-in engineering functions and current protocols allow
an attacker to gain complete control of a system without the
attacker having any ability to stop the attack [22], [23].

A better method for determining opportunity would be
to look at available standards that take into account vul-
nerabilities, but do not focus solely on them. National best
practices, such as NIST or U.S. Government guides [3], [24]–
[26], or regulatory requirements, such as NRC Cyber Security
Regulatory Guide for Nuclear Facilities or North American
Reliability Corporation Critical Infrastructure Protection (CIP)
standards [27], [28], provide excellent overall security posture
reviews for both physical and cybersecurity. These standards
are widely available and used by many organizations already
to secure their infrastructure. Opportunity has an inverse
relationship with risk. The more controls implemented the
greater the overall risk is reduced. We propose using one of
the well known standards listed above to calculate opportunity
as:

oi = 1− (% of controls implemented) (6)

The opportunity variable should never be zero since not all
part of each standard will be able to be implemented due to
the system design or use. Just as with all assessments, it is
important to be conservative and judicious in the scoring of
opportunity, so as not to show the attacker opportunity as less
than it is.

C. Impact

Impact is defined as the measure of the damage that an
attacker can cause if a malicious action is taken on a system
[9]. In ICS risk research, impact is the most well documented
due to it being easier to determine post event effects after an
event occurs. Fault tree analysis is a risk determination method
for determining how a failure can occur through causal chain
of events [29]. Cybersecurity and ICS network defense has
used fault trees, and their subset attack graphs, to determine
impacts on systems [30]–[33]. Fault trees and attack graphs
are extremely useful, but quickly become burdensome and
overwhelming with a complex system, and a different tree
or graph must be created for each identified issue. Another
method is to identify impact through looking at economic,
social, or insurance loss [34]–[39]. These methods are effective
at being easily translatable to a leader, but do not discuss the

2 INL/EXT-19-53494



impact that would have on the ICS’s ability to operate. Loss
methods are more suited for a retail-style business where loss
of financial information may lead to less consumers.

We believe the best method for determining impact is
analyzing what is needed for a system to conduct its required
operations, or mission. Impact to mission has been looked at
by analyzing the effectiveness of devices under degradation
[40], which systems are required to maintain mission capa-
bility [41], or worst-case scenario, crown jewel analysis that
would cripple an ICS business [22], [42], [43]. We propose
using the Consequence-driven, Cyber-informed Engineering
(CCE), as proposed by INL and [22], [42] to determine the
impact score.

D. Capability

Capability is the amount of ability by which an attacker
is able to conduct a malicious event on a system [15], [16].
Identifying attacker capability within ICS focuses on creating
signatures from honeypots [44], determining the type of attack
that is occuring [45], and deploying countermeasures to defeat
an ongoing attack [39], [46].

For leadership making risk-based decisions, it is important
to be able to predict the attacker’s ability to conduct an attack
prior to it happening. From our research, there has yet to
be a study focusing on predicting attacker abilities prior to
attack. In non-ICS research, predictive attacker capability has
been conducted by tying vulnerabilities to how likely those
vulnerabilities are to be exploited [47], or by using a planning
feedback loop to use current operations by an attacker to
predict future operations [16].

III. METHODOLOGY

We propose having experts set likelihoods of events using
a Bayesian network to determine attacker capability. Bayesian
networks allow subjective and objective information to be
applied and are updated easily when new information is
received [48]. They have also been used extensively in risk
assessments, ICS safety assessments and cybersecurity de-
fense [49]–[54]. Bayesian networks are better for determining
attacker capability than other probabilistic risk assessment
methods, such as Markov networks, because they are directed
acyclic graphs that have dependencies for when events can
occur [55].

As shown in [56], [57], it is possible to predict the likelihood
of an event if the order of required events is known. We define
our Bayesian network in Figure 2 based off the ICS Kill Chain,
as developed by Michael Assante and Robert Lee [58]. The
green area of Figure 2 can be objectively assessed prior to an
attack by an expert, the yellow section can possibly be assessed
prior to an attack, and the red section cannot be assessed until
an attack on the system has started. If the attacker reaches the
last red area, the risk is unacceptable, or 1. We determine the

Fig. 2. ICS Kill Chain Bayesian Network

attacker capability from the green and yellow sections. The
full joint probability of Figure 2 is defined as [48]:

P (cap1, cap2, cap3, ..., capn) =

n∏
i=1

P (capi | capi+1, ..., capn)

(7)
In order to analyze the suitability of our risk equation

(Equations 4 and 5), we conduct Monte Carlo simulations
of the opportunity, capability, and impact variables. As a
reminder, we treat intent as one, since it is not in our area
of research. Monte Carlo simulations use random samples to
obtain numerical results and assist in decision making [59].

We insert pseudo-random numbers via the Mersenne Twister
algorithm for the opportunity, capability, and impact. We
measure the average risk score, standard deviation, minimum
iterations required, probability that the risk score falls within
each area of our scale (Table I), and the probability that the
risk score is greater than 0.50. Our minimum iterations are
calculated by the equation [59]:

N =

(
Zα/2 ∗ σ

e

)2

(8)

where N is the number of iterations, Zα/2 is the z-score for
confidence from standard normal distribution, σ is the standard
deviation, and e is the specified error. For our research, the
specified error is 1% or 0.01. We run a minimum of 3000
iterations.

We also run Monte Carlo simulation with each variable
limited to above the minimum of each of our risk levels.
Random numbers are generated between 0.0–1.0, 0.25–1.0,
0.5–1.0, and 0.75–1.0 for each variable. These variations
will work to show effects for when scores of each variable
move higher and how the risk score changes. Results and
implications from our simulations are discussed below in
Section IV.

IV. ANALYSIS AND RESULTS

As discussed previously, risk has many ways to be calcu-
lated through qualitative and quantitative methods. The main
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Fig. 3. Histogram of Risk Scores

goal in formulating a risk calculation is to reduce the possibil-
ity of a hazard occurring to as low as reasonably allowable to
ensure success of the system [29]. For our analysis, we have
four variables, of which three variables are being analyzed
(opportunity, capability, and impact), and four levels of scores
for each variable. We also compare Equation 4 and 5. These
factors give 65 possible analyses to compare. We analyze
effects on the risk score overall, the effect of weighting on the
risk score, and the effect of varying the minimum allowable
score for each variable on the risk score in Subsections IV-A
– IV-C.

A. Average Risk Score

From the 64 possible analyses from varying Equation 4, the
average risk score was approximately 0.33 with a standard
deviation of approximately 0.17. The average minimum iter-
ations needed for a 95% confidence interval for our specified
error of 0.01 was approximately 1, 200 iterations with a low
of approximately 800 iterations and a high of approximately
2, 100 iterations. Our 3, 000 iterations was sufficient to reach a
desired error with a 95% confidence interval. Figure 3 shows
the distribution of each of the risk scores for each of the 64
analyses.

We can see that approximately 93.75% of all risk scores
fall into either medium low or low risk categories. Specifically,
medium low risk scores made up approximately 62.5% of all
risk scores and are shown in Figure 4. While he lower risk
levels might suggest that the risk equation is not effective, we
believe they illustrate that appropriately setting the defenses
your own network (opportunity variable) reduces the impact
of an attack and increases the capability an attacker must have
to be successful.

Given that leadership will focus on risk scores that are
higher, we look at the probability that the risk score will be
above 0.50 for each of the 64 analyses. While we do not
decide if a 0.50 risk score is positive or negative, we believe
that leadership would be less willing to accept risk levels of

Fig. 4. Histogram of Average Risk Scores for Risk
Levels

Fig. 5. Histogram of Probability of Risk Scores
Greater than 50.0%

medium high and high. None of the analyses has a 0.0%
probability of a risk level greater than 0.50. Approximately
84.4% of all analyses have a probability greater than 10.0%
of having a risk level of medium high or high. Having a
possibility of a risk level of medium high or high greater than
10% would cause leadership to want to maximize the ability
to limit that potential risk, and would prevent an insurer from
insuring against a cyber event as described by [2].

B. Weighting Affects on Risk

We calculate risk score with Equation 5 adding in pseudo-
random weights in the same manner as described in Section
III. We set the weights and variables between 0.0 and 1.0
and compare the results to the non-weighted risk score with
variable values set between 0.0 and 1.0.

The weighted average risk score was approximately 0.0029
with an approximate standard deviation of 0.0040. The min-
imum required iterations for a 95% confidence interval with
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Fig. 6. Weighted v. Non-weighted Risk Scores

error of 0.01 was one iteration. For the non-weighted aver-
age risk score was approximately 0.12 with an approximate
standard deviation of 0.14. The minimum required iterations
for a 95% confidence interval with error of 0.01 for the non-
weighted risk was approximately 784 iterations. We conducted
3, 000 iterations for each equation.

Figure 6 shows the distribution of scores for each risk level.
For Equation 5, all (100%) of the risk scores are in the low
risk level. For Equation 4, approximately 84.4% are in the low
risk level. Equation 4 has approximately 3.0% of risk scores
in either medium high or high risk levels. Weighting clearly
reduces the impact of each variable to the risk score. This
reduction in the risk score makes it impractical to assess the
risk to the system unless the scaling of the risk score is set up
differently. If a leader believes that one of the variables is more
important than the others, they should make risk decisions
based on the score calculated by that variable.

C. Variable effects on Risk

Given that weightings invalidate the risk score and each
variable has equal effect on the risk score, we conduct analysis
on how different variable score levels impact the risk score as
discussed in the beginning of this Section.

We calculate average weighting and probability that the risk
score will be above 0.50 for when each variable has a value:
between 0.0 – 1.0, referred to as A; between 0.25 – 1.0,
referred to as 25; between 0.50 – 1.0, referred to as 50; and
between 0.75 – 1.0, referred to as 75. Within the 64 analyses,
there are multiple instances where each variable is set at a
particular value. We show all of the different variations of
each level in the 64 initial analyses in Figure 7 leading to 20
analyses for variable level control effect.

When controlling for variables, approximately two sets of
analyses (2 75s, 1 50 and 3 75s) have a risk score averaging
above 0.50. Twelve analyses have an average risk level of
medium low, and six have an average risk level of low.
When a single variable is changed between levels, it causes
approximately a 6.70% change in the risk score overall. Based
off of the average risk score in the analyses, an extremely

Fig. 7. Risk Controlled by Score Levels

conservative method for calculating the risk score would be
to set each variable at the lower end of each scoring level,
and then average the scores out. We feel this method may
miss out on some of the intricacies for determining the risk of
each area, but would allow for quicker analysis and decision
making. This simplification would cause risk calculation error
if the variable were close to the next high risk score level.

Approximately 7 analyses had a probability of less than
10.0% for a risk score greater than 0.50. Approximately 9
analyses had a probability between 10.0% and 40.0% of risk
score greater than 0.50, and four analyses had a probability
greater than 40.0%. We consider 65.0% of all analyses having
probability greater than 10.0% of having a medium high or
high risk level a significant issue. The range of risk scores and
the probability for greater than 0.50 risk score indicates that
the Equation 4 has good sensitivity for figuring out the risk of
a system. We acknowledge that a weakness of this equation
is that each variable must be greater than 0.90 in order to
reach a risk level of high. We believe that while any one area
may have a high score level, the other areas are able to reduce
the risk level to medium high or medium low. For example, a
system may experience high impact to continued operations if
attacked, but if the network and physical security (opportunity)
has the applicable defenses in place, and the attacker does not
have an attack vector (capability), the risk to the system is
greatly reduced. For this reason, we believe that only having
a small percentage of scores determined to be as high risk
level is appropriate.

V. CONCLUSION

We believe our proposed calculation of risk presented in
Equation 4 is suitable for use in determining a risk within
ICS. The equation takes into account multiple aspects of
security from vulnerability management to security controls
(opportunity), the ability of an attacker to conduct an attack
(capability), the damage done to a system if attacked (impact),
and how intensely an attacker wants to cause damage to a
system (intent).
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While we only look at the first three and leave intent to
others, the analysis of the equation shows sufficient results
from Monte Carlo iterations to be useful for leaders looking to
make risk decisions. We also acknowledge that some aspects of
the equation will be more important for leaders than others. In
that case, risk decisions should be made based on the variable
deemed most important by the leader, instead of applying
weights to the equation.

A. Future Work

Future research will look to further advance the calculation
of the variables within the proposed risk equation. Specifically,
seeking an answer whether the proposed Bayesian network
in Subsection II-D can predict the probability of attack oc-
currence. We have seen from historical examples that events
can be if the chain of events can be known [56], [57]. Both
theoretical and case study analysis will be helpful in proving
viability of the method.
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